

Application-Oriented Stability, Reliability, and Robustness of GaN Power Devices

Yuhao Zhang, Professor, University of Hong Kong Email: yuhzhang@hku.hk

2025/08/14

Research scope of my group

Performance, Reliability, Cost

Sciences

Physics & Material

Device Design

Processing Technologies

Device Charact. and Application

Robustness & Reliability

--- Applications

Packaging Converter

we work on Si IGBT, SiC MOSFET, GaN HEMT, Ga₂O₃ devices…

Power semiconductors as pathways to carbon neutrality

nature reviews electrical engineering

Review Article | Published: 21 January 2025

Wide-bandgap semiconductors and power electronics as pathways to carbon neutrality

Yuhao Zhang [™], Dong Dong [™], Qiang Li [™], Richard Zhang, Florin Udrea & Han Wang [™]

Nature Reviews Electrical Engineering 2, 155–172 (2025) Cite this article

WBG semiconductor

WGB replacing Si can enable an annual carbon saving of at least 20 million tonnes in the USA – annual emissions of 4 million gasoline passenger vehicles

electricity generation 2,000 100% 81% 1,500 81% 500 24% Natural gas to 30 7 8 to 30 7

Impact on performance

Impact on energy consumption and carbon emissions

High critical electric field High thermal stability The carbon footprint of manufacturing WBG semiconductors is larger than that of Si semiconductors Si GaN Diamond SiC Ga₂O₃ AlN Bandgap

Semiconductor wafer manufacturing

Power device

- Small die size
- · Low energy loss
- Simple fabrication

Reduced carbon footprint per chip

Reduced carbon footprint per converter

components and cooling

Power circuit

High efficiency

Fewer passive

systems required

Integrating renewable energy in grids

Carbon-neutral electricity, transport and buildings

Power application

Flectrification of

buildings

transportation and

Efficient power conversion

WBG Devices: GaN HEMTs and SiC MOSFETs (>\$3 billion market)

- √ 2DEG: mobility >1500 cm²/Vs
- √ easy for IC integration
- ★ large chip size for high-voltage
- * thermal and E-field management
- robustness (avalanche and short-circuit)

- × MOS: mobility ~100 cm²/Vs
- Mostly discrete
- √ high current
- √ small chip size for high-voltage
- √ easier thermal management

Stability, reliability, and robustness – framework

J. Kozak *et al.*, "Stability, reliability, and robustness of GaN power devices: a review," IEEE Trans. Power Electron., 2023

Why GaN is special?

- Dynamic stability
 - Dynamic R_{ON}: conduction loss
 - Hysteresis C_{OSS} loss: high-frequency switching loss
- Overvoltage and surge energy robustness
 - No avalanche capability
- Short circuit robustness
- Gate reliability and robustness
- Must be characterized under inductive switching conditions

Outline

Lateral GaN HEMT Reliability

- Output capacitance loss
- Overvoltage robustness and lifetime
- Gate reliability and lifetime
- Bidirectional GaN
- Vertical GaN Devices: Performance and Reliability
 - Dynamic R_{ON} , avalanche, short-circuit
 - MHz converter application
- Summary

Hysteresis C_{oss} loss

- C_{OSS} loss: generated when C_{OSS} is charged and discharged in OFF-state (an ideal lossless process)
- "Hysteresis Loss": energy stored in C_{OSS} ≠ energy discharged from C_{OSS}

 A potential issue for GaN HEMTs, especially at (very) highfrequencies soft-switching applications, i.e., at MHz level.

G. Zulauf et al., IEEE Trans. on Power Electron., 2018.

A. Jafari et al., IEEE Trans. on Power Electron., 2020.

Coss loss characterization and modeling – discrete GaN

DUT's C_{OSS} Minimal turn-off loss

 L_{load} resonates with

- C_{OSS} loss extracted from the resonance

$P_{OSS} = f_{SW} k [\alpha + \beta I_{DS(max)}]$	$V_{\mathrm{DS}(peak)}^{\gamma}$
---	----------------------------------

<i>f</i> R	DUT	k	α	β	γ
2 MHz	P-gate	1.45×10^{-11}	0.42	0.33	1.86
	HD-GIT	0.95×10^{-16}	0.54	0.37	3.42
	Direct-drive	4.12×10^{-10}	0.03	0.30	1.20
6.78 MHz	P-Gate	1.81×10^{-11}	0.36	0.18	1.84
	HD-GIT	2.51×10^{-15}	0.29	0.22	3.32
	Direct-drive	2.58×10^{-11}	0.01	0.20	1.69

- E_{DISS} dependent on resonance frequency (dv/dt), voltage (power law), and current (linear), weak dependence on T
- Related to fast traps, with detrapping time constants distinct from dynamic R_{on}

Higher Coss loss in GaN Cacode: two additional origins

- C_{OSS} loss much higher in GaN cascode devices
- #1: C_{OSS} loss in GaN HEMT
- #2: Si avalanche loss
- #3: GaN hard turn-on loss (could be dominant)
- #2 and #3 are both due to Si avalanche in GaN cascode
- Solution: increasing Si C_{OSS} to make an avalanche-free cascode -> 75% less loss in soft switching

Minimizing intrinsic C_{OSS} loss in GaN HEMT

- C_{OSS} loss of GaN-on-Si HEMT can be reduced by tuning the substrate bias (V_{SUB}) in dynamic switching
- Compared to sub-source-shorting, at V_{SUB} = 0.5V_{DS}, E_{DISS} reduced by up to 86%, E_{DISS}/E_{OSS} ratio decreased from 14.6% to 2.2%
- Physics related to depletion front profile at different V_{SUB}

Q. Song et al., "Minimizing Output Capacitance Loss in GaN Power HEMT," IEEE Trans. on Power Electron., 2024.

Outline

Lateral GaN HEMT Reliability

- Output capacitance loss
- Overvoltage robustness and lifetime
- Gate reliability and lifetime
- Bidirectional GaN
- Vertical GaN Devices: Performance and Reliability
 - Dynamic R_{ON} , avalanche, short-circuit
 - MHz converter application
- Summary

Surge-energy robustness: Si/SiC MOSFETs v.s. GaN HEMTs

Si & SiC MOSFET:

V_{GS} $E_{AVA} = \frac{LI_O^2 BV_{AVA}}{2(BV_{AVA} - V_{DD})}$ V_{DS} $I_{L}(I_{AVA})$ V_{DD} V_{DD} V_{DD} V_{DD} V_{DD}

GaN HEMT:

Withstand process	avalanching	LC resonance & reverse conduction
Energy path	dissipation in device in avalanching	little/no dissipation in withstand; dissipation in reverse conduction
Limiting factor	avalanche energy	overvoltage capability
Failure mechanism	thermal run-away	E-field induced breakdown

R. Zhang et al., "Surge energy and overvoltage ruggedness of p-gate GaN HEMTs", IEEE Trans. Power Electron., 2020

Dynamic breakdown voltage

Inductive Switching Circuit

BV reduce with pulse width

Quasi-static I-V sweep

- BV converges to 'static' BV when PW> 200 ms
- Dynamic BV > Static BV

Physical mechanism

- Time-dependent buffer trapping
- Impact peak E-field

or static

Overvoltage switching at high frequency up to Megahertz

2000 Stable V_{DS-peak}
1500
500
0
5 1000
15 10
15 t (μs)

SP-HEMT (BV drop at higher f_{sw})

Repetitive UIS @ 75% BV

- Overvoltage switching at high f_{SW} triggers a new failure mechanism: thermal failure due to significant dynamic R_{ON} increase
- Qualification method: repetitive UIS
- Dynamic R_{ON} : the true limiter for overvoltage lifetime?

R. Zhang et al., "Overvoltage Robustness of p-Gate GaN HEMTs in High Frequency Switching up to Megahertz", IEEE Trans. Power Electron., 2023

Device lifetime under overvoltage switching: limited by dynamic R_{on}

Voltage rating can be determined by long-term dynamic R_{ON} increase (e.g., 10% after 10-yr hard-switching)

In-situ monitoring of R_{on}

Dynamic R_{ON} increase is the major degradation in overvoltage switching

DUT: EPC2218 (100 V rated) f_{sw} : 100 kHz V_{DS} peak : 120 & 150 V $T_{\rm c}:75\,{\rm ^{o}C}$

R. Zhang et al., "In-situ RDS(on) Characterization and Lifetime Projection of GaN HEMTs Under Repetitive Overvoltage Switching," IEEE Trans. Power Electron., 2023

Cannot be captured by off-line measurement

Physics-based model for lifetime projection

Time (sec.)

10⁴

Outline

Lateral GaN HEMT Reliability

- Output capacitance loss
- Overvoltage robustness and lifetime
- Gate reliability and lifetime
- Bidirectional GaN
- Vertical GaN Devices: Performance and Reliability
 - Dynamic R_{ON} , avalanche, short-circuit
 - MHz converter application
- Summary

Small V_{GS} headroom of p-gate GaN HEMT (as low as 1V)

Gate-to-Source Voltage	V_{GS}	-10 to +7	V
Gate-to-Source Voltage - transient For \leq 1 μs	V _{GS(transient)}	-20 to +10	٧

- Not RLC-resonant-like
- Slow turn on (low dV_G/dt)
- No power loop switching (i.e., drainsource grounded)

B. Wang et al. "Gate Robustness and Reliability of P-Gate GaN HEMT Evaluated by a Circuit Method." IEEE Trans. Power Electron., 2024

Gate reliability evaluated by circuit method

Spec.	Symbol	Functionality	Typ. Value
Input DC V.		 V_{G(DC+)} = V_{DD} Charge L_G 	5 V
Gate-loop inductor		Store surge energyModulate overshoot pulse width	50nH ~ 120nH
Fast switch	S ₁	• When ON, $L_{\rm G}$ charged by $V_{\rm DD}$	EPC8010
S ₁ ON-time	t _{ON,S1}	 Modulate V_{G(PK)} via surge energy 	20ns ~ 100ns
Iso. DC V.	V_1	• $V_{G(DC-)} \sim -V_1$	1 V
Fast switch	S ₂	• When ON, pull down $V_{\rm G}$ (< 0)	EPC8002
S ₂ ON-time	t _{ON,S2}	 Modulate D (via OFF time) 	
Power resistor	R ₁	Dissipate power of DC V.Damp ringing	33 Ω

Gate switching lifetime model (arbitrary V_G waveform, T, f_{sw})

Voltage Acceleration Function:

$$\sum stress^{V} = \int_{0}^{T} [V_{G}(t) - V_{G,Th}]^{b} dt \times \#SCTF$$

• f_{sw} Acceleration Function:

$$\mathbf{AF}^{f_{SW}} = \begin{cases} \mathbf{1} & (f_{SW} \le f_{Th}) \\ \mathbf{d} \cdot \mathbf{f_{SW}}^{e} & (f_{Th} < f_{SW} < f_{Sat}) \\ \mathbf{d} \cdot \mathbf{f_{Sat}}^{e} & (f_{SW} > f_{Sat}) \end{cases}$$

$$(e = 0.6)$$

T Acceleration Function:

$$AF^T = \exp(-\frac{E_A}{kT})$$
 $(E_A \sim -0.3 \text{ eV})$

Full switching model:

$$TTF = \frac{\#SCTF}{f_{SW}} = \frac{Const.}{\int_0^T [V_G(t) - V_{G,Th}]^{26} dt \times f_{SW} \times AF^{f_{SW}} \times exp(\frac{0.3eV}{kT})}$$

Gate robustness improvement by monolithic IC

79

77

76

75

25

8V_{G,DYN}

76 V

74 V 70 V

60 V

50 V

 \sum_{60}^{80}

¥40 20 20

 $V_{G,EX}(V)$

Zoom-in

t (20 ns/ div)

150 °C ICeGaN™ 78 V 80 V Si IGBT 80 V 80 V SIC MOSFET 70 V 70 V Discrete GaN 24 V 25 V SP-HEMT

- ICeGaN: GaN HEMT + monolithic gate protection IC
- Gate drive voltage similar to Si IGBT and SIC MOSFET
- Fast IC response in nanosecond voltage overshoot in the gate driver loop
- Dynamic gate breakdown voltage reaches 80 V
- Rated gate voltage for continuous switching over 30 V

50

75 1 T (°C)

125

150

ICeGaN™

Outline

Lateral GaN HEMT Reliability

- Output capacitance loss
- Overvoltage robustness and lifetime
- Gate reliability and lifetime
- Bidirectional GaN
- Vertical GaN Devices: Performance and Reliability
 - Dynamic R_{ON} , avalanche, short-circuit
 - MHz converter application
- Summary

GaN Bidirectional Switch

Dynamic R_{ON} Evaluation Board for GaN BDS

- Evaluation of industrial bidirectional GaN HEMT with and without substrate bias management
- In-situ dynamic R_{on} and V_{th} evaluation circuits for bidirectional device in hard- and soft-switching

Q. Song et al., APEC 2025, best presentation award

GaN BDS with Breakdown Votlage > 3 kV

- GaN BDS with BV over 3.3 kV in both polarities
- Dual p-GaN JTE, E-mode, R_{on,sp} of 5.6 mΩ·cm²
- The highest BV and best FOMs in GaN and SiC MBDS

Y. Guo *et al.*, "Enhancement-Mode GaN Monolithic Bidirectional Switch With Breakdown Voltage Over 3.3 kV," EDL 2025

Vertical GaN FinFET: from concept to commercialization

- 1.2 kV Fin-MOSFET with 200nm-wide fins
- $V_{th} \sim 1 \text{ V}$; $R_{on.sp} = 1 \text{ m}\Omega \cdot \text{cm}^2$
- 2-inch GaN-on-GaN wafer process
- Superior R_{ON}(Q_{OSS}+Q_{rr}) than SiC

Y. Zhang *et al.*, **IEDM** 2017

Y. Zhang *et al.*, 40 (1), **EDL**, 2019 (2019 IEEE EDS George Smith Award)

- NexGen's 1.2 kV Fin-JFET commercialization (VT characterization & application)
- \$100M+ GaN-on-GaN Fab in Syracuse, NY
- 1470 V BV_{AVA} , avalanche capability, 0.82 $m\Omega$ cm² (4-5x lower than 1.2 kV SiC MOS)

GaN devices can be dynamic R_{on} free

- Vertical GaN JFET are dynamic R_{ON} free under various voltage, current, temperature conditions
- Physics: 1) low dislocation density of GaN-on-GaN; 2) the absence of electric field crowding near the surface; 3) the minimal charge trapping in the native junction gate.

X. Yang et al., "Dynamic R_{ON} Free 1.2 kV Vertical GaN JFET," IEEE Trans. Electron. Dev., 2023

GaN devices can achieve breakthrough short-circuit robustness

- 650V GaN JFET: 30.5 μs @ 400 V, 10.6 μs @ 800 V (BV_{AVA})
- 1200V GaN JFET: >40 μs @ 800 V
- Physics: device-driver circuit interplay to suppress I_{SAT} at high temp

Gate

Driver

R. Zhang *et al.*, "Breakthrough short circuit robustness demonstrated in vertical GaN fin JFET," IEEE Trans. Power Electron. 2022 X. Yang *et al.*, "Evaluation and MHz Converter Application of 1.2-kV Vertical GaN JFET," IEEE Trans. Power Electron. 2024

GaN devices can have strong avalanche with right edge termination

- True avalanche (high I_{AVA} @ BV_{AVA}) needs to be validated by avalanche circuit test
- Small-angle beveled JTE
- Fabricated by a single implantation into p-GaN using beveled PR or dielectric mask

M. Xiao et al., "Robust avalanche in 1.7 kV vertical GaN diodes with a single-implant bevel edge termination," EDL, (IEEE George Smith Award 2023)

GaN power FinFET enables kilovolt, MHz applications

1.2kV,70mΩ GaN FinFET in DFN package

p+ fin p+ fin p+ n- drift layer n+ substrate drain

800V, 1MHz switching with wide *D* range

Higher f and efficiency than SiC and Si FETs

Zero-voltage-switching buck converter

- turn-on loss >> turn-off loss
- zero dynamic R_{ON}

X. Yang *et al.*, "Evaluation and MHz Converter Application of 1.2-kV Vertical GaN JFET." **T-PEL** 2024

50% smaller dead time η=97.7% @1MHz

25% lower loss than SiC @500kHz

60% lower loss than Si @100kHz

Summary

- GaN reliability has to be evaluated in-situ under switching conditions
- Lateral GaN HEMT
 - Dynamic R_{ON} and C_{OSS} loss
 - Different trapping origins (time constants); both can be suppressed by device engineering
 - Overvoltage and surge-energy ruggedness
 - BV is dynamic; dynamic R_{ON} could be the true limiter for overvoltage lifetime
 - Gate reliability and switching lifetime
 - New circuit method + switching lifetime model: arbitrary $V_{\rm G}$ waveform, T and $f_{\rm SW}$ dependence
- GaN monolithic bidirectional switch: new mission profiles and reliability issues
- Vertical GaN JFET
 - Dynamic R_{ON} free, better FOM than SiC MOS, robust avalanche and short-circuit

